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Abstract

Mistuning changes the dynamics of bladed disks significantly. Frequency domain methods for predicting the

dynamics of mistuned bladed disks are typically based on iterative aeroelastic calculations. Converged aerodynamic

stiffness matrices are required for accurate aeroelastic results of eigenvalue and forced response problems. The

tremendous computation time needed for each aerodynamic iteration would greatly benefit from a fast method of

predicting the number of iterations needed for converged results. A new hybrid technique is proposed to predict the

convergence history based on several critical ratios and by approximating as linear the relation between the

aerodynamic force and the complex frequencies (eigenvalues) of the system. The new technique is hybrid in that it uses a

combined theoretical and stochastic/computational approach. The dynamics of an industrial bladed disk is

investigated, and the predicted convergence histories are shown to match the actual results very well. Monte Carlo

simulations using the new hybrid technique show that the aerodynamic ratio and the aerodynamic gradient ratio are the

two most important factors affecting the convergence history.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Aeroelasticity; Turbomachinery; Bladed disks; Iterative methods; CFD
1. Introduction

Mistuning, small differences between the sectors of bladed disks, can lead to drastic changes in the dynamics of such

systems. The large increase in the forced response of the system due to mistuning has been observed and studied for a

long time (Anderson, 1958; Tobias and Arnold, 1957).

Recently, compact and accurate reduced order models (ROMs) have been developed (Bladh et al., 2001a, b; Lim

et al., 2003; Yang and Griffin, 2001a, b; Feiner and Griffin, 2002; Petrov et al., 2002). In particular, the fundamental

mistuning model (FMM) (Feiner and Griffin, 2002) and the component mode mistuning (CMM) (Lim et al., 2003)

method have been proposed. These approaches use one group of tuned system modes as basis for model reduction.

The results obtained without aerodynamic coupling and by using these ROMs have been shown to be as accurate

as the results obtained using the finite element method (FEM) (Lim et al., 2003; Feiner and Griffin, 2002). However,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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realistic bladed disks are coupled not only structurally, but also aerodynamically. Previous studies on lumped struc-

tural parameter models showed that interblade structural coupling and mistuning are two key factors affecting

mistuned systems (Wei and Pierre, 1988a, b). Aerodynamic forces, which provide aerodynamic damping as

well as blade-to-blade coupling, may change the dynamics of the system dramatically. Also, the flutter problem

arises when aerodynamic forces are considered. Hence, the inclusion of aerodynamic coupling in current ROMs is

necessary.

Early studies on the frequency domain aeroelastic problem of mistuned bladed disks used simple structural and

aerodynamic models (Kaza and Kielb, 1984, 1985; Crawley and Hall, 1985; Khader and Loewy, 1989). In these simple

models, the blades are usually represented by two-dimensional airfoils or cantilevered beams, and they can only have

rigid body mode shapes, e.g. pitch and plunge motions, which are far from the real three-dimensional elastic motion.

Recently, the aerodynamic calculation of unsteady pressure induced by elastic blade motions has been studied intensely,

and numerous models have been proposed (Hall, 1993; Hall and Lorence, 1993; Chaviaropoulos and Hansen, 2000;

Fransson et al., 1999; Bell and He, 2000). However, the applications of these aerodynamic models to aeroelastic

calculations are limited. Kielb et al. (2004a, b) incorporated a three-dimensional Reynolds averaged Navier–Stokes

(RANS) CFD code into the FMM model (Feiner and Griffin, 2002). He et al. (2005a) incorporated a quasi-

three-dimensional potential flow CFD code into the CMM model (Lim et al., 2003). Both methods use the cantilever-

blade normal modes (in the complex traveling wave coordinates) and their vibration frequencies to calculate the

unsteady aerodynamic forces. Seinturier et al. (2002) used both cantilevered blade modes and constraint modes to

calculate the unsteady aerodynamic forces.

Few studies have been conducted on the true, realistic aeroelastic calculations. Gerolymos (1993) used a mode-

modification technique to solve the tuned aeroelastic eigenvalue problem. Moyroud et al. (1996) proposed a direct

iterative method to calculate the aeroelastic eigenvalue problem. He et al. (2005b) used the tuned structural system

modes and the aeroelastic frequencies to calculate the aerodynamic forces with an iterative method. These studies have

shown that the converged tuned and mistuned results have significant differences compared to the one-step results or

the results using the blade normal modes.

In He et al. (2005b), the aeroelastic calculation requires much less computational time for the tuned case compared

to the mistuned case. The tuned cases require about 0.5 h for one step on a SunBlade-1000 machine and up to five

steps to converge. The mistuned cases require about 10 h for one step, and usually require more steps to converge

compared to the tuned cases. Such large amounts of computation time make it very important to be able to predict

the number of iterations needed to get converged results. This paper proposes a new hybrid method to predict the

convergence history. Several critical ratios are introduced to represent the properties of the system. This new technique

is hybrid in that it uses both exact information from accurate models as well as randomly generated Monte Carlo

models which allow for stochastic predictions for general aeroelastic configurations (He et al., 2006). The relation

between the unsteady aerodynamic forces and the aeroelastic frequencies is approximated by a linear relation, which

holds for many cases. For example, in many aeroelastic problems, the changes in frequency during the iterative

process are small because structural stiffness dominates the aerodynamic stiffness. Hence, structural frequencies are

good starting states for the iterative calculations (initial guesses). Also, good initial guesses may be available from

previous calculations, as is the case for design optimization applications. Herein, the new hybrid technique is applied to

a realistic bladed disk. The simulated convergence histories give good predictions for the actual convergence histories.

Monte Carlo simulations using the new hybrid technique with varying critical ratios show that the magnitudes of

aerodynamic matrices and their gradients with respect to the aeroelastic frequencies are two key factors affecting the

convergence history.
2. Aeroelastic model

This section summarizes the approach used to include aerodynamic effects within the CMM method by using the

tuned structure-only system modes with iterations over natural frequencies and mode shapes. For a complete

description of the aeroelastic models using the cantilever-blade normal modes and the tuned structure-only system

modes, one may refer to He et al. (2005a, b). Note that the tuned aeroelastic calculation is not discussed separately here

because it is similar to the mistuned aeroelastic calculation.

In the tuned system modal space (employed by FMM and CMM methods), the modal equations for the eigenvalue

and forced response problems can be expressed as (Lim et al., 2003; He et al., 2005b)

½ð1þ jgÞKsyn þ Ka � o2Msyn�qS
f ¼ 0 (1)
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and

½ð1þ jgÞKsyn þ Ka � o2Msyn�qS
f ¼ US;0

G
�
f, (2)

where the asterisk denotes the Hermitian of a complex matrix, j ¼
ffiffiffiffiffiffiffi
�1
p

, US;0 is a truncated set of normal modes (in the

frequency range of interest) of the tuned system with structural coupling only, subscript G denotes the blade DOFs, qS
f

are the corresponding modal coordinates, Ka is the complex aerodynamic coupling (stiffness) matrix related to US;0, g is
the modal structural damping, f is the physical force acting on the blades, and the matrices Msyn and Ksyn are the whole

modal mass and stiffness matrices, including the structural stiffness and mass mistuning components. Note that only

structural stiffness mistuning is considered in this paper, and the tuned structure-only system modes US;0 are

normalized with respect to the tuned mass matrix in the physical domain. Hence, Msyn ¼ I. Also, note that KaqS
f

represents the modal aerodynamic forces. Therefore, linearity between the blade motion and the aerodynamic forces

induced by the blade motion is assumed. Such linearity holds when the blade motions are small (Hall, 1993; Hall and

Lorence, 1993). However, the dependence of the aerodynamic forces on the complex vibration frequency is nonlinear

(Hall, 1993), which requires iterative calculations for accurate aeroelastic results. Note that Ka is a complex matrix.

Due to cyclic symmetry, the tuned structure-only modes can be expressed in a standing wave form or a traveling wave

form (Bladh, 2001). In this paper, the traveling wave form is used. Hence, for every tuned structure-only mode, a

constant phase angle si between adjacent sectors exists, which is referred to as the interblade phase angle

si ¼
2pi

NB

; i ¼ 0; 1; . . . ;NB � 1, (3)

where NB is the number of blades, and i is the traveling wave index associated with the tuned system mode. For i ¼ 0

and i ¼ NB=2 (if NB is even), the traveling wave and the standing wave are the same. For i ¼ 1 to i ¼ ðNB � 2Þ=2 (if NB

is even) or i ¼ ðNB � 1Þ=2 (if NB is odd), si and sNB�i correspond to the same nodal diameter i, but with opposite

traveling directions. The undamped tuned structure-only system modes related to si and sNB�i are complex conjugates.

Their real and imaginary parts are the corresponding standing wave modes. It is easy to show that traveling waves with

different interblade phase angles are orthogonal to each other (Bladh, 2001).

The aeroelastic system modes can be obtained from Eq. (1) as

US;n
G;i ¼

XNS

r¼1

QS;n
f;riU

S;0
G;r ; i ¼ 1; 2; . . . ;NS, (4)

or in matrix form as

US;n
G ¼ US;0

G Q
S;n
f , (5)

where the superscript n denotes results after n steps of iterative calculations, NS is the number of tuned structure-only

system modes used in Eq. (1), and the matrix Q
S;n
f is in the form of

Q
S;n
f ¼ ½q

S;n
f;1 q

S;n
f;2 � � � q

S;n
f;NS
�. (6)

The unsteady aerodynamic forces (acting on a blade and) induced by the ith aeroelastic system mode US;n
G;i can be

obtained (using superposition) by the following linear relation:

F
S;n
i ¼

XNS

r¼1

QS;n
f;riF

S;0
i;r ; i ¼ 1; 2; . . . ;NS, (7)

where F
S;n
i is the unsteady aerodynamic force induced by the mode shape US;n

G;i , and F
S;0
i;r is the unsteady aerodynamic

force induced by the rth tuned structure-only system mode shape US;0
G;r . Note that, at the nth iteration step, the mode

US;0
i;r vibrates with the ith mistuned complex system natural frequency on

i (where o
n
i is complex; see Eq. (1)). Hence, FS;0

i;r

is also related to on
i . The elements of the aerodynamic matrix (in the mistuned aeroelastic system modal coordinates)

ÂM ;n can be expressed as

Â
M ;n
ij ¼ US;n

G;i
�
F

S;n
j ¼

XNS

r¼1

QS;n
f;ri

�
US;0

G;r
�

 ! XNS

t¼1

QS;n
f;tjF

S;0
j;t

 !
¼
XNS

r¼1

XNS

t¼1

QS;n
f;ri

�
US;0

G;r
�
QS;n

f;tjF
S;0
j;t . (8)

The calculations in Eq. (8) can be simplified using the orthogonality between US;0
G;r and F

S;0
j;t with different interblade

phase angles. The aerodynamic matrix in the tuned structure-only system modal coordinates can be derived by using the
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modal transformation shown in Eq. (5). One obtains

Ka;n ¼ Pn�ÂM;nPn, (9)

where Pn ¼ ðQ
S;n
f Þ
�1 is the modal transformation from the mistuned aeroelastic system modes to the tuned structure-

only system modes.

After each iteration n, the matrix Ka;n is compared to Ka;n�1 and the iterative process continues until their values are

converged. An aerodynamic matrix with zero elements is used for the first step of iteration.
3. Hybrid technique: general case

In this section, for clarity, Fðon
i ;U

S;n
G;r Þ is used to replace FS;n

i and Fðon
i ;U

S;0
G;r Þ is used to replace FS;0

i;r in Eq. (7). Hence,

Eq. (7) can be rewritten as

Fðon
i ;U

S;n
G;r Þ ¼

XNS

r¼1

QS;n
f;riFðo

n
i ;U

S;0
G;r Þ; i ¼ 1; 2; . . . ;NS. (10)

From Eqs. (5), (8), and (9), Ka;n can be expressed as

Ka;n ¼ Pn�ÂM;nPn ¼ Pn�Q
S;n
f
�
Â

M;n
0 Pn ¼ Â

M;n
0 Pn, (11)

where the elements of matrix Â
M;n
0 can be obtained using Eq. (10) as follows:

Â
M ;n
0;ij ¼ US;0

G;i
�
Fðon

j ;U
S;n
G;r Þ ¼

XNS

r¼1

QS;n
f;rjU

S;0
G;i
�
Fðon

j ;U
S;0
G;r Þ. (12)

Usually, the aerodynamic calculation to obtain each term US;0
G;i
�
Fðon

j ;U
S;0
G;r Þ in Eq. (12) is very time consuming because of

the large dimension of the overall problem as well as the eigenvalue analysis required for the far field nonreflective

boundary conditions (Hall et al., 1993). Hence, parametric studies for the convergence history are formidably expensive

computationally. To overcome this difficulty, changes in aerodynamic forces Fðon
j ;U

S;0
G;r Þ due to changes in aeroelastic

frequencies are approximated by assuming a linear dependence of aerodynamic forces on vibration frequencies. Fig. 2

shows a typical variation of the natural frequency o0
R;j (i.e. real part of o

0
j ) as a function of nodal diameter diagram,

where each nodal diameter represents an interblade phase angle of a tuned system mode. The horizontal lines

correspond to blade dominant modes, while the slant lines correspond to disk dominant modes. Usually, the frequency

range covering only one group of blade dominant system modes is considered, so the differences between the aeroelastic

frequencies are small. Although the actual dependence of aerodynamic forces on the frequencies is nonlinear, their

linear approximation can give reasonable predictions about the convergence history. Also, the real and imaginary parts

of the complex aeroelastic frequency are assumed to be two independent variables because the gradient of the

aerodynamic forces with respect to these two variables can be distinct. Under this assumption, Fðon
j ;U

S;0
G;r Þ can be

expressed as

Fðon
j ;U

S;0
G;r Þ � Fðo0

r ;U
S;0
G;r Þ þDRðo0

r ;U
S;0
G;r Þ

on
R;j � o0

R;r

oref
þDI ðo0

r ;U
S;0
G;r Þ

on
I ;j � o0

I ;r

oref
, (13)

where a subscript R denotes the real part of the complex frequency, and a subscript I denotes the imaginary part of the

complex frequency, Dðo0
r ;U

S;0
G;r Þ is the linear coefficient of the aerodynamic force to the relative changes of natural

frequencies, o0
r is the rth structure-only complex frequency, and oref is a reference frequency. Because only one group of

blade dominant modes is considered, the mean value of the corresponding frequencies for these modes is used as oref in

this paper, except in the case of a tuned case, as discussed in Section 4. Note that the unit for o is rad/s instead of Hz

here. Therefore, one can rewrite Eq. (12) as

Â
M ;n
0;ij �

XNS

r¼1

QS;n
f;rjU

S;0
G;i
�
Fðo0

r ;U
S;0
G;r Þ þDRðo0

r ;U
S;0
G;r Þ

on
R;j � o0

R;r

oref
þDI ðo0

r ;U
S;0
G;r Þ

on
I ;j � o0

I ;r

oref

" #
, (14)
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or

Â
M ;n
0;ij �

XNS

r¼1

US;0
G;i
�
Fðo0

r ;U
S;0
G;r ÞQ

S;n
f;rj þUS;0

G;i
�
DRðo0

r ;U
S;0
G;r Þ QS;n

f;rj

on
R;j � o0

R;r

oref

 !"

þUS;0
G;i
�
DI ðo0

r ;U
S;0
G;r Þ QS;n

f;rj

on
I ;j � o0

I ;r

oref

 !#
. (15)

By examining Eq. (15), five matrices are defined as

A0;ij ¼ US;0
G;i
�
Fðo0

j ;U
S;0
G;j Þ; GR

0;ij ¼ US;0
G;i
�
DRðo0

j ;U
S;0
G;j Þ; GI

0;ij ¼ US;0
G;i
�
DI ðo0

j ;U
S;0
G;j Þ, (16,17,18)

Tn
R;ij ¼ QS;n

f;ij

on
R;j � o0

R;i

oref
; Tn

I ;ij ¼ QS;n
f;ij

on
I ;j � o0

I ;i

oref
. (19,20)

Hence, Eq. (15) can be rewritten in a matrix form

Â
M ;n
0 ¼ A0Q

S;n
f þGR

0 T
n
R þGI

0T
n
I . (21)

Finally, the aerodynamic matrix in the tuned structure-only system modal space Ka;n can be obtained as

Ka;n ¼ A0 þGR
0 T

n
RP

n þGI
0T

n
IP

n. (22)

The linear dependence of Ka;n on Tn
R and Tn

I reflects the linear approximation in Eq. (13). Due to the orthogonality of

vectors with different interblade phase angles, A0 and G0 are block diagonal matrices in which every block corresponds

to one interblade phase angle. Moreover, A0 is precisely the tuned aerodynamic matrix after the first step in the iterative

calculation. In fact, during the first-step calculation, an aerodynamic matrix with zero entries is used. Hence, the

aeroelastic eigenvalues and eigenvectors are the structure-only ones. Thus, both Pn and Q
S;n
f are identity matrices, and

on
j � o0

i ¼ 0 when j ¼ i. This results in Tn
R ¼ 0, Tn

I ¼ 0 and Ka;n ¼ A0; A0 is referred to as the aerodynamic (coefficient)

matrix. GR
0 and GI

0 represent ratios between the change of every entry in A0 and the change of the corresponding

complex natural frequency. GR
0 and GI

0 are referred to as the frequency gradient matrices and they can be estimated

easily by changing the real and imaginary parts of the eigenvalues and recalculating the tuned aerodynamic matrix. Tn
R

and Tn
I account for the effect of the complex frequency changes into the modal transform matrix between the aeroelastic

and structure-only modal spaces. Note that A0, G
R
0 and GI

0 are constant during the iterative calculations, which

provides very important computational savings.

To investigate the effects of various factors on the iterative process, several ratios are defined as follows:

rA ¼
kA0k

o2
ref

; rG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGR

0 k
2 þ kGI

0k
2

q
kA0k

, (23,24)

rF ¼
sðo0

s Þ

oref
; rV ¼

oD � oB

oref
; rM ¼

kK
syn
M k

o2
ref

, (25,26,27)

where kA0k denotes the Euclidean norm of A0, sðo0
s Þ is the standard deviation of the structural natural frequencies of

the blade dominant system modes, oD and oB are the frequencies in the frequency veering region corresponding to the

disk and blade dominant modes, and K
syn
M is the mistuned part of the structural stiffness matrix Ksyn. If there is no

frequency veering region, rV ¼ 0. rA, referred to as the aero ratio, denotes the strength of aerodynamic coupling. rG,

referred to as the gradient ratio, denotes the sensitivity of the aerodynamic coupling to natural frequencies. Note that

only one gradient ratio is defined, because the magnitudes of GR
0 and GI

0 are usually very similar. rF , referred to as the

frequency ratio, denotes the spread of the frequencies of the investigated group of blade dominant system modes. rF is

also an indicator of the strength of the structural coupling through the disk. A larger rF indicates stronger structural

coupling. rV , referred to as the veering ratio, denotes the strength of the frequency veering phenomenon. Note, only one

frequency veering region is considered in the current study, although multiple frequency veering regions are easy to

implement. rM , referred to as the mistuning ratio, denotes the strength of the structural mistuning. The assumption of a

linear relationship between the aerodynamic forces and frequency is most likely to be violated when the fluid system is

near an instability such as an acoustic resonance or shedding. Predicting the frequency of these fluid instabilities is more

complicated, and an alternate method, such as a quadratic approximation may be needed.
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4. Hybrid technique: tuned case

When a bladed disk is perfectly tuned, no coupling is present between the tuned structure-only system modes with

different interblade phase angles. Therefore, a tuned aeroelastic mode can only be a linear combination of the tuned

structure-only system modes with the same interblade phase angle. Hence, QS;n
f , Pn and then Tn are block diagonal

matrices, each block corresponding to an interblade phase angle. From Eq. (22), the aerodynamic matrix Ka;n is also a

block diagonal matrix. In this case, the whole aeroelastic problem can be decomposed into NB degraded aeroelastic

problems. Therefore, Eqs. (1) and (22) can be simplified as

½ð1þ jgÞKi þ Ka
i � o2I�qS

f;i ¼ 0 (28)

and

K
a;n
i ¼ A0;i þGR

0;iT
n
R;iP

n
i þGI

0;iT
n
I ;iP

n
i , (29)

where i ¼ 0; 1;NB � 1 is the interblade phase angle index, and K is the undamped tuned structural stiffness matrix. The

dimension of each aeroelastic problem is the number of tuned structure-only system modes related to the corresponding

interblade phase angle si. Compared to the general case, the dimension of the problem is one order of magnitude

smaller. Hence, the computation time saving is very important, especially when parametric studies are desired, such as is

the case for the Monte Carlo simulations.

In this paper, only two aeroelastic modes are considered in the simplified tuned case study. Although more aeroelastic

modes can be included easily in the computation, in most of practical calculations (like the case of a frequency veering

region), it is enough to consider just two modes. For simplicity, the index i is dropped from Eqs. (28) and (29), and a

superscript or a subscript T is used to denote the simplified tuned case. For example,

Ki ¼ KT
¼ Diagðo2

01;o
2
02Þ, (30)

Ka
i ¼ Ka

T ; A0;i ¼ AT
0 , (31,32)

GR
0;i ¼ GTR

0 ; GI
0;i ¼ GTI

0 , (33,34)

where Diag denotes a diagonal matrix, and o01, o02 are the two undamped tuned structural frequencies in the veering

region. The frequency ratio rF and mistuning ratio rM are disregarded in this case, and the veering ratio rT
V is redefined

as

rT
V ¼

o02 � o01

o01
. (35)
5. Results and discussion

5.1. Case study for an actual bladed disk

In this section, the convergence histories of the aeroelastic calculations for an industrial bladed disk from previous

studies (He et al., 2005b) are reproduced using the hybrid technique. The 26-bladed disk shown in Fig. 1 represents a

stage of an industrial turbine. Fig. 2 shows the structural natural frequencies versus nodal diameter numbers for the

tuned system. Two frequency ranges were studied in (He et al., 2005b). The first one features the first group of system

modes (first flexural: 1F), ranging from 500 to 1000Hz. The other one features the second group of system modes (first

torsional: 1T). Because there is a frequency veering region in the 1T frequency range, the dimension for this frequency

range is 28. The blade stiffness mistuning pattern considered in this paper has a standard deviation of 0.027 and a mean

value of zero. The structural damping used for aeroelastic calculation is 0.001. The mass ratio m of the airfoil is 310,

where m ¼ m=ðrpb2Þ with m denoting the mass of the airfoil per unit span, r denoting the steady flow density, and b

denoting half of the chord length. One step in the iterative calculation consumes about 40min for the tuned case and 7 h

for the mistuned case on a SunBlade-1000 machine. The tuned and mistuned structural modal stiffness matrices can be

obtained directly from the CMM computer code Turbo-Reduce 2002 (Lim et al., 2003). The aerodynamic coefficient

matrix A0 can be obtained after one step of calculation for the tuned system. The frequency gradient matrices GR
0 and

GI
0 can be calculated as discussed in Section 3. The sensitivity matrices DR and DI are calculated by using a finite

difference approach, i.e., by perturbing the real and imaginary parts of the complex frequency and calculating the
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Fig. 1. Finite element model of an industrial bladed disk.

Z. He et al. / Journal of Fluids and Structures 24 (2008) 732–749738
changes in aerodynamic forces. Table 1 shows the reference frequency and the actual ratios for these two frequency

ranges. The bladed disk considered here has relatively weak structural coupling and relatively strong aerodynamic

damping. For real turbomachinery bladed disks, the frequency variation of structural-only system modes can be as high

as 80% for some blisks and the aerodynamic damping is within the range of 1% for most turbomachinery blading.

Fig. 3 shows the simulated and actual convergence errors versus number of calculation step for the tuned and mistuned

systems in the 1F and 1T frequency ranges. The convergence error is defined as

dn
¼
jKa

nþ1 � Ka
nj

jKa
nþ1j

, (36)

where jKa
nj denotes the sum of absolute values of all the entries in the aerodynamic matrix Ka after nth step of

calculation. Because Ka
0 ¼ 0 is used, d0 is always equal to 1, and hence it is not shown. The actual iteration stops when

dnp10�5. The simulated results match very well the actual results. For the mistuned case, in the 1F frequency range, the

differences between the simulated and actual results are slightly larger than those in other cases. These differences are

likely caused by the nonlinear relation between the aerodynamic forces and the aeroelastic natural frequencies. Hence,

the predictions made for convergence histories are less accurate for cases of strong nonlinear dependence of

aerodynamic forces on frequency. Nonetheless, for many cases this dependence is approximately linear. For example, in

many aeroelastic problems, the changes in frequency during the iterative process are small because good starting states

for the iterative calculations (initial guesses) are available (e.g. from structural frequencies, or from previous

calculations, as is the case for design optimization applications). To address general aeroelastic configurations,
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Fig. 2. Natural frequencies versus nodal diameter numbers for the tuned bladed disk assembly.

Table 1

Reference frequency and actual ratios for the 1F and 1T frequency ranges of the industrial bladed disk

Frequency range 1F 1T

oref (rad/s) 4745 9616

rA 0.237 0.289

rG 0.625 2.415

rF 7:96� 10�3 8:94� 10�3

rV 0.0 5:92� 10�2

rM 0.131 0.0134

g 0.006 0.001
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perturbed matrices are used. For example, for the matrix A0, a perturbed matrix AP
0 is generated by perturbing every

entry of A0 with a random percentage within a certain range. If that certain range is �A, an element of AP
0 can be

obtained as

AP
0;ij ¼ ð1þ �A;ijÞ � A0;ij ; i; j ¼ 1; 2; . . . ;NS, (37)

where �A;ij is a random number, and �A;ij 2 ½��A; �A�. Fig. 4 shows the probability density function (PDF) of the

convergence errors using the randomly perturbed matrices for the mistuned 1F case. Ten thousand samples are used

and the percentage ranges are 0:3 for A0, G
R
0 , and GI

0, and 0 for others. The actual results are also plotted in Fig. 4.

Although the calculation of aerodynamic forces is still linear, the actual results are in the ranges of the PDF or close.

Note that, in this case, the numerical simulation requires only about 3min for each iteration step with 10 000 samples.

Also, one can generate all the matrices randomly using the acquired ratios defined in Section 3. For example, the

reference frequency can be set to be the average of the structural frequencies of the blade dominant modes. Next, every

entry of A0 can be generated randomly first, and then the Euclidean norm of A0 is forced to match the actual aero ratio

rA. Fig. 5 shows the PDF of the convergence errors using the totally random matrices for the mistuned 1F case. As

shown in Fig. 5, the hybrid technique using totally random numbers with fixed ratios predicts the actual results with

good accuracy. One may observe that the ranges of the PDF in Fig. 4 are larger than those in Fig. 5. This is because the

sampled space of totally random systems includes the space of slightly perturbed systems. Hence, the actual
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convergence errors are closer to the broader ranges of the Monte Carlo predictions (i.e. Fig. 4). Also, the first-step

results in Figs. 4 and 5 are less accurate than the results after more iterations. For the results after more iterations, the

changes in the complex frequencies (compared with results of the last iterative step) become smaller. Therefore, the

assumption of linearity between aerodynamic forces and complex frequencies is more closely satisfied, and the hybrid

approach is more accurate.

Table 2 shows the relative errors of the converged results using the hybrid method compared with the actual

converged results. For the 1F frequency range, the errors are small (although above 10�5). For the 1T frequency range,

the errors are larger. This is likely caused by the fact that, having a veering region, the eigenvalues in the 1T frequency

range have a broader range than those in the 1F frequency range. Hence, the errors become larger. However, the

purpose of the hybrid technique is to predict the convergence history of the aeroelastic calculation correctly and quickly,

and not to predict the actual aeroelastic results.
5.2. General Monte Carlo simulation

To investigate the effects of various factors on the iteration convergence, a Monte Carlo simulation is performed by

changing two ratios while other ratios are kept constant. For every combination of these ratios, all the matrices are
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determined randomly by matching the ratios and the predefined reference frequency. Actually, under this formulation,

the results will hold irrespective of the reference frequency. The dimension of the system is 10 for normal cases and 12

for cases with a frequency veering region. Usually, actual systems have larger dimensions. However, a 10-dimension

system is considered large enough to study the effects of critical factors. Ten thousand samples are used for every

combination of the ratios. The nominal values of the ratios are 0:3 for rA, 1:0 for rG, 0:01 for rF , 0 for rV , 0:2 for rM , and

0:001 for g.
Fig. 6 shows the convergence error with changing rA and rG. The mean error, as well as the 90% confidence levels

are plotted. As shown in Fig. 7, for a confidence 1� a, a a=2 portion of all the samples fall below the lower confidence

level dl and fall beyond the upper confidence level du (Bury, 1975). Also shown in Fig. 7 is the average (mean) error da.

When rA ¼ 0 or rG ¼ 0, which represents no aerodynamic influence or no aerodynamic matrix dependence on

the complex frequency, the convergence error is zero. The convergence error becomes larger when rA or rG grows.

If both rA and rG are very large, convergence cannot be achieved. This phenomenon is not shown in Fig. 6 because

the iterative calculation fails in such a situation. A large rA indicates that the system has a large aerodynamic

matrix, which can change the complex aeroelastic frequency significantly. A large rG makes this aerodynamic matrix

sensitive to the change of aeroelastic natural frequencies. Hence, the iterative process fails to converge when rA

and rG are both large. Note that the computation time for one iteration step in this case is about 70min with 10 000

samples.

Fig. 8 shows the convergence error with changing rF and rV . The basic trend is that the system converges slower when

rF or rV becomes smaller. However, the effect is relatively small, and there is no case in which convergence cannot be

achieved.

The convergence error with changing rM and g is shown in Fig. 9. The structural damping g has no significant effect

on the convergence error. When the mistuning ratio rM becomes larger, the convergence error first grows rapidly, then

drops, and finally approaches a constant value. The mistuned system converges always slower than the tuned one. There

are two major consequences of the growth of rM . First, the differences between the tuned and mistuned structural

frequencies become larger. Second, the off-diagonal terms in Q
S;n
f become larger. Note that when the system is tuned,
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Fig. 5. Probability density function of results using the totally random matrices for the mistuned case in the 1F frequency range: (a)

first step; (b) second step; and (c) third step.

Table 2

Relative errors between simulated converged results and actual converged results

System 1F tuned 1F mistuned 1T tuned 1T mistuned

Error 8:35� 10�5 6:55� 10�4 4:36� 10�3 1:77� 10�2
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Q
S;n
f is a block diagonal matrix. Both factors make the matrices TR and TI in Eq. (21) have larger variations during the

iterations. When the mistuning level is relatively small, this effect dominates, and the system converges harder.

However, when the mistuning level is very large, the combined (tuned and mistuned) structural stiffness matrix becomes

larger, which makes the relative effect of the aerodynamic matrix smaller. Then, the system exhibits a slow reduction in

the convergence error. Also, overall, the effect of rM on the convergence is small compared to rA and rG.

As shown in Fig. 3, the convergence error is larger for a mistuned system than a tuned system, which can be predicted

from Fig. 9. Also, the convergence error is larger for the 1T frequency range than for the 1F frequency range. From

Table 1, the major differences between the critical ratios for these two frequency ranges are rG and rV . Because the effect

of rV is not very significant, the larger value of rG for the 1T range is the major reason for the slower convergence in this

frequency range.

Fig. 10 shows the convergence error with changing rA and g. The structural damping has no significant effect on the

convergence error. The convergence error increases quickly when the aero ratio rA becomes larger. Fig. 11 shows the

convergence error for various ratios rF and rM . The effect of the frequency ratio rF on the convergence error is small.

When the mistuning ratio rM increases (from 0), the convergence error increases rapidly first, and then decreases

smoothly. Fig. 12 shows the convergence error for various rG and rV . A larger gradient ratio rG makes the aeroelastic

iterations harder to converge, while a larger veering ratio rV makes the iterations easier to converge. However, the effect

of rG is much more significant than rV .
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Fig. 6. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rA and rG. (a) First step; (b) second step; (c) third step; (d) fourth step.
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Fig. 9. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rM and g. (a) First step; (b) second step; (c) third step; (d) fourth step.

Fig. 8. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rF and rV . (a) First step; (b) second step; (c) third step; (d) fourth step.
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Fig. 11. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rF and rM . (a) First step; (b) second step; (c) third step; (d) fourth step.

Fig. 10. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rA and g. (a) First step; (b) second step; (c) third step; (d) fourth step.
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Fig. 12. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a mistuned system with

changing rG and rV . (a) First step; (b) second step; (c) third step; (d) fourth step.

Fig. 13. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a tuned system with

changing rT
A and rT

G . (a) First step; (b) second step; (c) third step; (d) fourth step.
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Fig. 14. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a tuned system with

changing rT
G and rT

V . (a) First step; (b) second step; (c) third step; (d) fourth step.

Fig. 15. Monte Carlo simulation results (mean error da and error limits du and dl of 90% confidence level) for a tuned system with

changing rT
V and rT

A . (a) First step; (b) second step; (c) third step; (d) fourth step.
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5.3. Monte Carlo simulation: tuned system

A tuned system described in Section 4 is studied. The only critical ratios considered here are rT
A , rT

G , and rT
V . Ten

thousand samples for every combination of these ratios are used for the Monte Carlo simulation. The smallest one of

the tuned undamped structural natural frequencies is used as a reference frequency. For this case, the largest relative

error in the aerodynamic damping with one-step calculation is 20% compared to the converged result.

Fig. 13 shows the convergence error with changing rT
A and rT

G . The veering ratio rT
V is 0. Similar to Fig. 6, larger rT

A and rT
G

make the aeroelastic calculation harder to converge. This is consistent with Moyroud et al. (1996), where Moyroud

et al. state that tuned bladed disks made of composites are harder to converge than the tuned bladed disks made

of metallic alloys. This is explained herein by the fact that, for composite bladed disks, the ratios rT
A and rT

G are

smaller than those of metallic bladed disks under the same operation point and with the same geometry. Actually, from

Section 5.2, this conclusion also holds for the mistuned case. The convergence error with changing rT
G and rT

V is shown in

Fig. 14. The aero ratio rT
A is 0:01. Similar to Fig. 8, when the frequencies o01 and o02 (in Eq. (30)) are closer, the aeroelastic

calculation becomes harder to converge. This result is particularly useful to be compared with the discussions of Gerolymos

(1993) who states that for a tuned system, the stability of the iterations requires that the eigenfrequencies are well separated.

Note that in Fig. 13, a system with a zero value of rT
V can converge fast if both rT

A and rT
G are small. Also, note that Figs. 8

and 14 show a relatively small effect of rT
V on the convergence error. This seems somewhat contrary to Gerolymos’ (1993)

results. However, in Gerolymos (1993), the iteration is formulated using a mode-modification technique, which calculates

the tuned aeroelastic eigenvalues and eigenvectors separately for every aeroelastic mode. The aeroelastic calculations shown

in Sections 3 and 4 are formulated by solving the aeroelastic eigenvalue problem directly. Although this method requires

more computation time for finding eigenvalues and eigenvectors, it is shown that it is better than the mode-modification

technique in the sense of convergence. Fig. 15 shows the convergence error for various rT
V and rT

A . The convergence error

increases quickly with increasing rT
A , and the aeroelastic iterations become harder to converge when rT

V approaches 0.
6. Conclusions

A hybrid technique has been proposed to predict the convergence error of the aeroelastic calculation for mistuned

bladed disks. The dependence of the aerodynamic forces on vibration frequencies has been approximated linearly by

proposing an aero ratio based on two aerodynamic gradient matrices. Several other critical ratios have been defined to

study their effects on the convergence error. Matrices randomly generated according to these critical ratios, as well as the

exact matrices of an actual model, can be used in this hybrid technique. The hybrid technique has been validated using

the exact matrices calculated for an actual industrial bladed disk. Monte Carlo simulations for general mistuned systems

and tuned systems have been performed, and several conclusions have been obtained for the bladed disk studied.

First, the aero ratio rA and the gradient ratio rG have significant effects on the convergence error. For a system with

both large rA and rG, an iterative calculation is likely to be unable to converge.

Second, the mistuned aeroelastic calculation is harder to converge than the corresponding tuned calculation. When

the mistuning level is small, increases in the mistuning ratio rM make the system harder to converge. While the

mistuning level is large, the convergence error decreases slowly when rM grows. In general, rM has a moderate effect on

the convergence error.

Third, a smaller veering ratio rV or a smaller frequency ratio rF makes the system harder to converge. However, the

effect is relatively small. Finally, the structural damping g has no significant effect on the convergence error.
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